units

MTE3543

Faculty of Engineering

Undergraduate - Unit

This unit entry is for students who completed this unit in 2012 only. For students planning to study the unit, please refer to the unit indexes in the the current edition of the Handbook. If you have any queries contact the managing faculty for your course or area of study.

print version

6 points, SCA Band 2, 0.125 EFTSL

Refer to the specific census and withdrawal dates for the semester(s) in which this unit is offered, or view unit timetables.

LevelUndergraduate
FacultyFaculty of Engineering
OfferedClayton First semester 2012 (Day)
Coordinator(s)R Lapovok

Synopsis

This unit explores the relationships between the microstructure and deformation of materials. Metal forming will be linked to the factors that control formability, with yield criteria and constitutive behaviour being examined. Students will engage in finite element analysis of metal processing. Microstructural features governing fatigue, fracture and failure of structures will be explored and the extent to which we can predict failure outlined, including design against failure, critical crack size, low and high cycle fatigue. Microstructural toughening, effects of welds and thermal stability of materials will be addressed in terms of mitigation or minimization of structural defects.

Outcomes

On successful completion of this unit, students will be better able to:

  1. Explain the relation between plasticity and metal forming (formulate a plasticity problem in respect to a metal forming operation)

  1. Describe the main metal shaping processes

  1. Conduct a finite element analysis of a simple forming operation

  1. Suggest a formability test in relation to a given metal shaping process

  1. Calculate a yield locus and describe its use

  1. Mathematically describe a fatigue life curve and relate this to microstructures

  1. Calculate allowable crack sizes, and on this basis evaluate materials and inspection methods for a given engineering application

  1. Describe microstructural reasons for failures and methods used to prevent those failures

  1. Analyse simple engineering failures and evaluate possible remedies.

Assessment

Final examination (3 hours):60%
Assignments and case study report: 30%
Laboratory reports: 10%

Chief examiner(s)

Professor George Simon

Contact hours

Three 1 hour lectures/tutorials per week and seven hours of private study per week. 20 hours of laboratory classes during the semester

Prerequisites

ENG1050

Prohibitions

MTE3506, MTE4561