units

MEC3453

Faculty of Engineering

Undergraduate - Unit

This unit entry is for students who completed this unit in 2012 only. For students planning to study the unit, please refer to the unit indexes in the the current edition of the Handbook. If you have any queries contact the managing faculty for your course or area of study.

print version

6 points, SCA Band 2, 0.125 EFTSL

Refer to the specific census and withdrawal dates for the semester(s) in which this unit is offered, or view unit timetables.

LevelUndergraduate
FacultyFaculty of Engineering
OfferedClayton First semester 2012 (Day)
Sunway First semester 2012 (Day)
Coordinator(s)W K Chiu (Clayton); B T Tan (Sunway)

Synopsis

Students develop skills in analysing the response of a vibratory system to an external stimuli. Techniques for developing the equation of motion, defining the forcing function and analysing the vibratory response. Fundamental calculus for analysing mechanical vibrations and the generalised kinematics and kinetics of particles and rigid bodies using vector algebra. A systematic method of establishing a dynamic model with the associated forces and motion, a set of coordinate axis and the choice of derivation method for the governing equations for the model and solution techniques follows. Skills presenting results develop along with understanding the relevance of dynamics in engineering.

Outcomes

Use of kinematics and kinetics in engineering problem solving
Use of vector algebra in solving 3D engineering dynamics
The concepts of degrees of freedom and its use in defining a model and the solutions to the model
An appreciation for the role of vibrations in machines and structures in engineering
Of the various solution methods for single and multi-degree of freedom representation of dynamic systems
How vibration fits into engineering design
How vibrations can affect the safe operation of machinery
Perform basic engineering calculations in a systematic and logical manner in dynamics and mechanical vibrations
Apply the concepts of dynamics in the analysis of vibration problems
Make observations and measurements for the analysis of vibration problems.
Use of computer methods to solve modelling problems.

Assessment

Project Work 10%
Tutorial work:15%
Examination (3 hours): 75%

Chief examiner(s)

Professor Chris Davies

Contact hours

3 hour lectures, 3 hours practice sessions or laboratories per week and 6 hours of private study per week

Prerequisites

ENG2091 and MEC2401 or MTH2021 or MTH2032

Prohibitions

TRC3200